搜索资源列表
mclassex4
- zip code handwriting detection by matlab
bprecognition
- 采用神经网络实现手写识别的一种方法,建立Bp神经网络,采用快速训练方法,可快速完成一类相关手写字体的模式识别,识别率较高,当字体变化较大识别率降低时,可重新训练具有较强的适应性。实验证实本方法较好实现了手写字符识别,但也存在识别速度较慢,有时训练不收敛等缺点-Handwriting recognition using neural network is a way to establish Bp neural network, using fast training methods, and c
bayesclassifier0
- bayes分类器,脱机手写识别,含实验数据-bayes classifier, off-line handwriting recognition, with the experimental data
hmm
- Handwriting recognition with hmm!
code
- Handwriting recognition with template
svm
- Handwriting recognition with svm
ThreeBp
- 三层bp网络实现三种模式识别,没有使用matlab工具箱,完全自己手写-Three modes of three bp networks to identify, do not use matlab toolbox, completely on my own handwriting
miu_for_CMA
- CMA_4QM算法,本人自己手写的关于CMA的算法,结构很清晰,有注释说明,对初学者有很大的参考价值-CMA_4QM algorithm, my own handwriting on the CMA algorithm, the structure is very clear, there are explanatory notes for a great reference for beginners
10mcmb26
- Handwriting recognition technology using matlab
numbercheck
- 检测手写输入,有几种方法,例如贝叶斯方法,几何方法等等。-Handwriting Detection
HandWeitenNumRecognition
- 通过学习BP神经网络技术,对手写数字进行识别,基于结构的识别法及模板匹配法来提高识别率。-Through the study of BP neural network technology, digital handwriting identification, structure-based identification method and template matching method to improve the recognition rate.
GIUandDIP
- GIU的综合应用,其中包括建立简单的GIU以及按键滑条等使用和图像处理的例子,包括图像的伽马变换,幂次变换,放大缩小旋转,各种高通低通滤波器(理想,高斯,巴特沃斯),通道变换等。(纯自己手写!!)-GIU comprehensive application, including the establishment of a simple GIU and slider buttons and other examples of the use and image processing, inclu
handwriting
- 手写体识别系统,用于对0-9的数字识别出正确率-Handwriting recognition system, for 0-9 identify the correct rate
chapter19
- 基于SVM的手写字体识别,简单介绍SVM的应用-SVM handwriting recognition based applications briefly SVM
数字识别
- 手写体识别,包括样本,基于传统神经网络编写,使用MATLAB神经网络工具箱(Handwriting Recognition)
Lenetchange
- 卷积神经网络CNN,基于手写体数据库的相关训练(Convolution neural network, handwriting training)
