搜索资源列表
Volterra_MultiStepPred_luzhenbo
- 基于Volterra滤波器混沌时间序列多步预测 作者:陆振波,海军工程大学 欢迎同行来信交流与合作,更多文章与程序下载请访问我的个人主页 电子邮件:luzhenbo@sina.com 个人主页:luzhenbo.88uu.com.cn 参考文献: 1、张家树.混沌时间序列的Volterra自适应预测.物理学报.2000.03 2、Scott C.Douglas, Teresa H.-Y. Meng, Normalized Data Nonlineariti
c11_teqtutor
- . R. Johnson, Jr., R. K. Martin, J. M. Walsh, A. G. Klein, C. E. Orlicki, and T. Lin, "Blind Channel Shorteners," Proc. The 13th IFAC Symposium on System Identification, Rotterdam, The Netherlands, August 2003.
c10_spawc03
- R. K. Martin, C. R. Johnson, Jr., M. Ding, and B. L. Evans, "Infinite Length Results for Channel Shortening Equalizers," Proc. The IV IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Rome, Italy, June
kmeans
- function [L,C] = kmeans(X,k) KMEANS Cluster multivariate data using the k-means++ algorithm. [L,C] = kmeans(X,k) produces a 1-by-size(X,2) vector L with one class label per column in X and a size(X,1)-by-k matrix C containing the centers
