搜索资源列表
stprtool.rar
- 统计模式识别工具箱(Statistical Pattern Recognition Toolbox)包含: 1,Analysis of linear discriminant function 2,Feature extraction: Linear Discriminant Analysis 3,Probability distribution estimation and clustering 4,Support Vector and other Kernel Machines,
CKPCA-HOG-SVM
- 为了准确地对监控场景中的运动目标进行语义上的分类,提出了一种基于聚类的核主成分分析梯度方向直方图和二又决策树支持向量机的运动目标分类算法。-In order to accurately monitor the movement of scene targets semantic classification, the clustering based on kernel principal component analysis of gradient direction histograms,
kernel
- svm 核函数的选择与构造 在matlab中运行-svm kernel function and structure of the choice to run in matlab
svm
- SVM源代码程序,包含了SVM的各个子模块-SVM source code program, including the various sub-modules of the SVM
kerneladatron
- kernel adatron, svm impelemtation using gradient ascent method, fast and accurate for solving SVM problem with two classes
kerneladatron
- Kernel adatron, solving svm with gradient ascend method. fast and accurate.
SVM
- In this paper, we show how support vector machine (SVM) can be employed as a powerful tool for $k$-nearest neighbor (kNN) classifier. A novel multi-class dimensionality reduction approach, Discriminant Analysis via Support Vectors (SVDA), is in
SVregression
- In kernel ridge regression we have seen the final solution was not sparse in the variables ® . We will now formulate a regression method that is sparse, i.e. it has the concept of support vectors that determine the solution. The thing to not
svclassify
- A method for classification of image using svm kernel
KPCA
- 在ORL或Yale标准人脸数据库上完成模式识别任务。用PCA与基于核的PCA(KPCA)方法完成人脸图像的重构与识别试验. -Or Yale in the ORL face database, complete the standard pattern recognition tasks. With the PCA and kernel-based PCA (KPCA) method to complete the reconstruction of face image and reco
rbf
- 向量机算法中的核函数 向量机算法中的核函数-SVM kernel function
rbfSVM
- 基于RBF径向基核函数实现SVM支撑矢量机算法,-SVM algorithm based on RBF kernel
SVMandKERLandMATLAB
- 支持向量机SVM和核函数kerl的matlab程序合集-Support Vector Machine SVM and kernel kerl the collection matlab program
svm_kernel_demo
- 利用polynomial order kernel function来秀出SVM执行时可能产生出来的错误并汇图表示-Use of polynomial order kernel function to SVM showed off that may arise out of implementation errors and exchange graph
SVM
- 支持向量机SVM和核函数的matlab程序集,压缩包中包含常用的各种SVM函数,-Support vector machine and kernel function SVM matlab assembly, compressed package that contains a variety of commonly used SVM function
svmandkernelmethodstoolbox
- Matlab工具包,包含了支持向量机和核函数的工具包,可直接调用-Matlab toolkit, including support vector machine SVM and kernel function tool kit, can be called directly
KernelSVM
- SVM中常用的核函数,可直接通过调参使用(The common kernel function in SVM can be used directly by adjusting parameter)
CS-SVM
- cs算法优化svm的惩罚参数c和核函数的参数gamma。(The CS algorithm optimizes the penalty parameter C of SVM and the parameter gamma of kernel function.)
PSO-SVM
- 利用粒子群优化算法对支持向量机中的核函数参数和惩罚参数进行优化是非常有效的手段,可以大大提高鲁棒性。实际过程中读者可通过下载我上传的代码,简单进行修改和阅读附件论文即可快速掌握相关方面的知识,快速使用这一方法。(Particle swarm optimization (PSO) is a very effective method to optimize the kernel function parameters and penalty parameters of SVM, which can
