搜索资源列表
pikaiaf90
- genetic optimizer : Genetic algorithms are heuristic search techniques that incorporate in a computational setting, the biological notion of evolution by means of natural selection. This subroutine implements the three basic operations of
apso
- pso优化算法,粒子群算法,也称粒子群优化算法(Particle Swarm Optimization),缩写为 PSO, 是近年来发展起来的一种新的进化算法((Evolu2tionary Algorithm - EA)。PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。
New-Folder
- 实现遗传算法的基本历程,可以自由修改变异概率,交叉概率,迭代次数等-Basic Course genetic algorithm, can be freely modified mutation probability, crossover probability, the number of iterations
adsga
- 遗传算法自适应交叉率和变异率,基本的自适应方法-Adaptive genetic algorithm crossover and mutation rate, the basic adaptive method. .
GA
- 遗传算法是一种通过模拟自然进化过程搜索最优解的方法。其MATLAB程序, 采用二进制Gray编码,采用基于轮盘赌法的非线性排名选择, 均匀交叉,变异操作,并引入了倒位操作。-Genetic algorithm is a method of searching the optimal solution for the natural process of evolution through simulations. Its MATLAB program using a binary Gray co
