搜索资源列表
B样条小波边缘检测的改进算法
- 第1章为绪论。简要介绍了课题研究背景、意义及研究现状。 第2章具体介绍小波变换应用在图像边缘检测的基本原理。在连续小波变 换基础上引入实际中应用范围较广的离散小波变换,重点分析了多分辨率小波 变换。 第3章介绍B样条小波边缘检测的改进算法。基于B样条小波变换,将 Contourlet变换应用在多尺度自适应阈值边缘检测中。 第4章介绍多层次自适应空间系数高斯小波边缘检测方法。将灰度共生矩 阵特征值应用在高斯小波变换中,提出一种多层次自适应算法。 第5章介绍Canny算子与小波变换结
Harris尺度不变性关键点检测子的研究
- :在特定的参数设置下Harris尺度不变性检测子不能提供足够数目的稳定关键点,以往研究据此断定 Harris尺度不变性检测子不稳定,不是有效的特征检测子.在构造Harris角点值的尺度空间过程中,存在一系列参 数影响着Harris角点值在尺度空间中极值点的数目,从而决定了Harris尺度不变性检测子所能获取的稳定关键 点的数目.对这个参数空间进行了系统研究,发现积分尺度与微分尺度的比值对Harris尺度不变性检测子能否检 测到足够数目的稳定关键点具有决定性的影响.
尺度空间理论的介绍以及应用_ppt
- 尺度空间理论的介绍以及应用
计算机视觉中的尺度空间方法
- 近年来,尺度空间方法被广泛应用于计算机视觉领域,作为统一框架,已逐渐成为国际上计算机视觉和图像处理领域研究的热点。
Scale_Space_Histogram_of_Oriented__Gradients_for_H
- 本文运用尺度空间理论检测人体,通过集成 面向梯度与histogramof尺度空间理论 -Human detection is the task of finding presence and position of human beings in images. In this paper, we apply scale space theory to detecting human in still images. By integrating scale space
scalespace
- 包含了5篇Tony Lindeberg 尺度空间理论经典著作,希望大家能够受益-Contains five Tony Lindeberg Scale Space Theory classics, I hope we can benefit from
sift
- SIFT算法是一种提取局部特征的算法,在尺度空间寻找极值点,提取位置,尺度,旋转不变量。-sift of
err
- SIFT算法是一种提取局部特征的算法,在尺度空间寻找极值点,提取位置,尺度,旋转不变量。-sift of
sift
- 主要讲述了尺度空间和SIFT算法 可以更深入的理解之间的关系-Focuses on the relationship between the scale space and deeper understanding of the SIFT algorithm
SIFT-algorithm
- SIFT特征(Scale-invariant feature transform,尺度不变特征转换)是一种计算机视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David Lowe 在1999年所发表,2004年完善总结。其应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对。此算法有其专利,专利拥有者为 英属哥伦比亚大学。 局部影像特征的描述-SIFT algorithm
sift-based-on-edge-corner
- SIFT 由特征提取,特征描述符描述和特征匹配 3 部分构成,该算子特征提取数目庞大,建立特征描述符运算 量高,导致算法效率低。提出了一种 SEC( SIFT-Edge-Corner) 算法,在图像尺度空间提取角点代替 SIFT 特征点,并根 据角点是边缘曲率极值理论,预先采用 Canny 算子得到高斯边缘图像金字塔,再提取角点并进行尺度选择。实验结 果表明: 该算法在保障高准确率的前提下大幅度提高特征提取效率-By the SIFT feature extraction, fea
zijichangshimbianyige
- 以多光谱数据为原始数据,通过空间变换、滤波、融合、纹理及图像处理等手段,提取遥感图像多维、多尺度特征,最终建立面向目标检测、识别和分析的特征空间,并使用NASA的实测数据对方法的性能进行验证和分析。-Multi-spectral data to the original data, through space conversion, filtering tools, integration, texture and image processing, remote sensing images
multiscale
- 按照二维函数的特点和视觉机制,提出了用来捕捉纹理基元的纹理检测器函数,基于纹理检测器和扩展的小波变换,提出了基于能量分解的影像纹理多尺度分析方法,并按照神经动力学的侧抑制和端点抑制等理论,实现了对多尺度纹理特征的融合,这一多尺度分析方法直接将影像纹理能量在时间一尺度空间分解,包含了相位信息,避免了基于线性变换多尺度分解引起的能量与相位分离,为纹理分析提供了一个层次性的框架,有效提高了纹理的识别能力。-According to the characteristics of two-dimensio
dwt
- 已知一信号f(t) 3sin100pit+2sin68pit+5cos(72pit) 且该信号混有白噪声 对 该信号进行连续小波变换 小波函数用db3 尺度为1、1.2、1.4、1.6……3。 要求 在MatLab 工作空间中直接输入命令 用cwt()函数计算这一信号的小波变换-MatLab dwt
结合双模多尺度 CNN 特征及自适应深度KELM 的浮选工况识别
- 针对可见光图像特征驱动的浮选工况识别方法的不足,提出一种基于双模态图像多尺度 CNN 特征及自适应深度自编码核极限学习机(Kernel Extreme Learning Machine,KELM)的浮选工况识别方法。先对泡沫的可见光、红外图像进行非下采样剪切波多尺度分解,设计双通道 CNN 网络对双模态多尺度图像进行特征提取及融合,将多个双隐层自编码极限学习机串联成深度学习网络对 CNN 特征逐层抽象提取,然后通过核极限学习机映射到更高维空间进行决策,最后改进量子细菌觅食算法并应用于深度自编码
cAMx用户手册中文版
- 扩展综合空气质量模型(CAMx)是一个欧拉的区域光化学离散模型,它允许把从邻区到大陆 空间尺度的对流层空气污染(臭氧、颗粒物、大气有毒物质)作为整体的“一个大气”来考虑。 它是最前沿的开源系统:计算高效、灵活、对公众开放。模型的 Fortran 源代码高度模块化 并且相关说明文档齐全。Fortran 二进制输入/输出文件格式以城市空气流量模型(UAM)规则 为基础并且兼容很多现有的前处理和后处理工具。气象场由独立的天气预测模型提供给 CAMx。所有的排放输入数据由外部的前处理系统提供。
