资源列表
GRNN
- 基于广义线性回归神经网络的预测,计算出相应的误差。(Based on the prediction of generalized linear regression neural network, the corresponding error is calculated.)
emd+HHT1
- EMD分解HHT变换,通过对实测波进行EMD分解为IMF,生成幅值,相位谱,边际谱(EMD decomposes the HHT transform, and generates the amplitude, phase spectrum and marginal spectrum by decomposing the measured wave into IMF by EMD)
hht+EMD2
- EMD分解HHT变换,通过对实测波进行EMD分解为IMF,生成幅值,相位谱,瞬时频率,三维时频谱(EMD decomposes the HHT transform and generates amplitude, phase spectrum, instantaneous frequency and three-dimensional time-frequency spectrum by decomposing the measured wave into IMF by EMD)
hht+EMD3
- HHT变换,通过对实测波进行EMD分解为IMF,生成幅值,相位谱,瞬时频率,三维时频谱(EMD decomposes the HHT transform and generates amplitude, phase spectrum, instantaneous frequency and three-dimensional time-frequency spectrum by decomposing the measured wave into IMF by EMD)
Scientific Computing_2ndEd
- 科学计算第二版课本 作者:Michael T. Health(Scientific Computing_2ndEd author: Michael T. Health)
HHT+EMD4
- HHT变换,EMD分解通过对实测波进行EMD分解为IMF,生成幅值,相位谱,瞬时频率,三维时频谱(EMD decomposes the HHT transform and generates amplitude, phase spectrum, instantaneous frequency and three-dimensional time-frequency spectrum by decomposing the measured wave into IMF by EMD)
Hilbert-Huang5
- EMD分解HHT变换,通过对实测波进行EMD分解为IMF,相位谱,瞬时频率,三维时频谱(EMD decomposes the HHT transform and generates amplitude, phase spectrum, instantaneous frequency and three-dimensional time-frequency spectrum by decomposing the measured wave into IMF by EMD)
颜色特征提取
- 图像处理方面,基于rgb特征,进行颜色特征提取(In image processing, color feature extraction is based on RGB features)
机器学习_梯度下降算法实现
- 机器学习_梯度下降算法实现——C++ 程序使用方法: 程序只包括一个源文件gradient.cpp 运行的时候,将train.dat和test.dat两个数据及gradient.cpp放在同个目录下. 利用以下命令行操作即可. g++ gradient.cpp -o gradient gradient 程序运行的结果会在命令行中打印出来 该程序10秒钟内可以运行结束.(Machine learning _ gradient descent algorithm)
高通滤波
- 图像处理预处理,高通滤波处理,对图像进行滤波,(Image processing, high pass filtering, filtering the image,)
Daniulive-Android-SDK-2017-07-17
- rtmp播放器安卓源码,网上一个大佬的开源代码(rtmp player for android)
PyAlgoTrade用户手册中文版
- PyAlgoTrade用户手册中文版,相关模块使用详细(PyAlgoTrade user manual Chinese version, the use of relevant modules in detail)
