资源列表
yolo_tensorflow
- 基于YOLO的目标检测, 对十种物体进行识别和定位。(object detection based on YOLO, perform recognition and location to ten types of objects.)
Chapter04
- 基于tensorflow 的神经网络的损失函数,学习率,正则化,滑动平均等方法(Method of loss function, learning rate, regularization and sliding average of neural network based on tensorflow)
基于SOM的数据分类
- SOM神经网络也属于自组织型学习网络,只不过更特殊一点它属于自组织特征的映射网络。该网络是由一个全连接的神经元阵列组成的无教师,自组织,自学习的网络。(SOM neural network also belongs to self-organizing learning network, but more specifically, it belongs to self-organizing feature mapping network. The network is a non-teache
DenseNet-master
- 这篇文章是CVPR2017的oral,非常厉害。文章提出的DenseNet(Dense Convolutional Network)主要还是和ResNet及Inception网络做对比,思想上有借鉴,但却是全新的结构,网络结构并不复杂,却非常有效!众所周知,最近一两年卷积神经网络提高效果的方向,要么深(比如ResNet,解决了网络深时候的梯度消失问题)要么宽(比如GoogleNet的Inception),而作者则是从feature入手,通过对feature的极致利用达到更好的效果和更少的参数。(
pytorch-a2c-ppo-acktr-master
- 改代码为ACKTR代码,该算法比传统的TRPO和DQN在运行速度和计算量都有很大的提升(scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation)
tensorflow
- tensorflow的简单应用与入门学习,快速上手tensorflow(Tensorflow's simple application and entry learning, quick start tensorflow)
.rar
- 风电场优化调度,基于改进遗传算法,内含算法及程序,2017年(wind power le=zeros(1,length(f)); le=zeros(1,length(f));)
MATLAB
- 马尔科夫模型,包括终极预测概率,非常好用,通俗易懂(The Markoff model, including the ultimate prediction probability, is very easy to use and easy to understand.)
19.决策树与随机森林
- 决策树和随机森林,非常实用的PPT资料,推荐(Decision tree and random forest, very useful PPT data, recommended.)
python machine learning
- 作者是Sebastian Raschka,密歇根州立大学的博士生,他在计算生物学领域提出了几种新的计算方法,还被科技博客Analytics Vidhya评为GitHub上最具影响力的数据科学家。他有一整年都使用Python进行编程的经验,同时还多次参加数据科学应用与机器学习领域的研讨会。在数据科学、机器学习以及Python等领域他拥有丰富的演讲和写作经验,本书可使得不具备机器学习背景的人设计出由数据驱动的解决方案。(The author, Sebastian Raschka, a PhD stu
entropy
- 求解信号的香农熵和指数熵,分别从功率谱和奇异谱的角度求解(The Shannon entropy and exponential entropy of signals are obtained.)
DBN
- 深度信念网络,神经网络的一种。既可以用于非监督学习,类似于一个自编码机;也可以用于监督学习,作为分类器来使用。(Deep belief network, a kind of neural network. It can be used for unsupervised learning, similar to a self-coding machine, or supervised learning, as a classifier.)
