- LINUX 操作系统资料
- Tutorial Continuing Detours: the reinvention of Windows API Hooking
- LED 8X8 点阵显示技术在8X8 点阵上显示柱形
- MRI-shepplogan 此代码为基于压缩采样理论的shepploan图像的重建算法
- Alu-with-seven-segmetn-output This contains VHDL source code for a simple arithmetic logic unit. the input and results are displayed on a 4 digit 7 segment display. The user controls the input throug the use of switches. This design was created for the nexys 2 fpga but can be easily ported to other fpga s.
- targer_point rcmc: 距离徙动算法.SAR多点目标成像算法
文件名称:elm
介绍说明--下载内容来自于网络,使用问题请自行百度
极限学习机是由黄广斌在2005年作为一种新的单隐层前馈神经网络提出的,具有与神经网络(NN)相同的全局逼近性质,且其参数学习无需迭代,速度明显快于现有的神经网络。目前在岩性识别、LF终点温度软测量、穿孔机导盘转速测量、软测量建模、图像识别等方面有所应用,但将其用于图像分割中的应用还较少。-Extreme learning machine is by Huang guangbin in 2005 as a new single hidden layer feedforward neural network is presented. And with neural network (NN) with the same global approximation properties, and learning its parameters without iteration and significantly faster than the existing neural networks. At present in lithology identification, lf end temperature soft measurement, punch guide disc speed measurement, soft measurement modeling, image recognition and so on some aspects of applications, but will be used for image segmentation is little used.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
elm/ELM.m
elm/elm_predict.m
elm/elm_train.m
elm/sinc-1.m
elm/sinc-2.asv
elm/sinc.m
elm/sinc_mean.m
elm/sinc_test1
elm/sinc_train1
elm
elm/ds_elm_predict2.asv
elm/ds_elm_predict2.m
elm/dt2.asv
elm/dt2.m
elm/ELM2-dt.asv
elm/ELM2.asv
elm/ELM2.m
elm/ELM2_dt.m
elm/elm_predict2.asv
elm/elm_predict2.m
elm/elm_train2.m
elm/sinc_mean2.asv
elm/sinc_mean2.m
elm/sinc_test
elm/sinc_train
elm/elm_predict.m
elm/elm_train.m
elm/sinc-1.m
elm/sinc-2.asv
elm/sinc.m
elm/sinc_mean.m
elm/sinc_test1
elm/sinc_train1
elm
elm/ds_elm_predict2.asv
elm/ds_elm_predict2.m
elm/dt2.asv
elm/dt2.m
elm/ELM2-dt.asv
elm/ELM2.asv
elm/ELM2.m
elm/ELM2_dt.m
elm/elm_predict2.asv
elm/elm_predict2.m
elm/elm_train2.m
elm/sinc_mean2.asv
elm/sinc_mean2.m
elm/sinc_test
elm/sinc_train
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
