搜索资源列表
tuxiangqiege
- 基于像素点的全局阈值法求图像的分割 实现方法有五种: 最小极值法,最优阈值法,最大方差方法,最大熵法,迭代法-Pixel-based global threshold method for image segmentation method there are five: the smallest extreme value method, the optimal threshold method, the largest variance method, the maximum ent
jizhilvbo
- 图像处理中滤波时,运用极值滤波的方法滤除杂波,得到清晰的图像-Image processing filter, the use of extreme methods of filtering to filter out the clutter, get a clear image
miyao
- 本文提出了基于二维混沌映射的数字图像水印算法,混沌具有随机性、似噪声及对初始条件的极端敏感性等特点。将经过二维混沌映射置乱后的数字水印信号嵌入图像小波域的低频系数,实现了数字水印的隐蔽性、保密性和稳固性;利用二维混沌映射Arnold变换对水印信号进行置乱,不仅增强了水印信号保密性,同时有效提高了视觉上抵抗图像剪切攻击的能力。-In this paper, two-dimensional chaotic map based on digital image watermarking algorit
lvbochengxu
- 假定中值滤波程序的采样次数为3,要求将三次采样后的数据分别存放在寄存器R2、R3、R4中,滤波结果放在R3中 去极值平均滤波程序,要求连续采样18次,并将采样后的数据存放在内部RAM的70H到81H单元中,最后的滤波结果存放在寄存器R1中-Assumed that the median filter of the sampling frequency of the procedure for 3, requested that the three samples, respective
IEEE_ExtremePrograming_2010_D
- This question was asked in IEEE Extreme Programming 2010. Its a graph problem, that the nodes with minimum cost should be followed.
huangjinfenge
- 用黄金分割法求极值 用黄金分割法求极值-Extremum with the Golden Section Golden Section Method with extreme extreme with the Golden Section Method
Two-dimensional-chaotic-map
- 本文提出了基于二维混沌映射的数字图像水印算法,混沌具有随机性、似噪声及对初始条件的极端敏感性等特点。-In this paper, two-dimensional chaotic map based on digital image watermarking algorithm, Chaos is random, like noise and extreme sensitivity to initial conditions and so on.
MARK_ImagePyramids
- SIFT图像特征提取的图像预处理步骤:构建图像构建高斯金字塔,相邻层相减得到DOG金字塔,在DOG金字塔3x3x3的邻域内寻找局部极值点,供进一步计算SIFT特征描述子使用。工程运行于VS2008环境,需要OpenCV支持。Debug目下exe文件可以直接双击运行查看结果。-SIFT image feature extraction image preprocessing steps: build image Gaussian pyramid, subtracting the adjacent
image-retrieval-technology-research
- 基于内容的图像检索技术的关键在于特征提取,是利用图像的颜色、形状、纹理、轮廓、对象的空间关系等客观独立的存在于图像中的基本视觉特征作为图像的索引,计算查询图像和目标图像的相似距离,按相似度匹配进行检索。综合国内外研究现状,可将基于内容的图像检索技术分为如下几种类型:基于颜色特征的检索、基于纹理特征的检索、基于形状及区域的检索、基于空间约束关系的检索。-Based on comparing various affine invariant regional basis, selection of
EMzhongzhi
- 关于图像的极值滤波算法,matlab实现,算法简单有效-On the extreme values of the image filtering algorithm, Matlab implementation, the algorithm is simple and effective
sift
- 1 SIFT 发展历程 SIFT算法由D.G.Lowe 1999年提出,2004年完善总结。后来Y.Ke将其描述子部分用PCA代替直方图的方式,对其进行改进。 2 SIFT 主要思想 SIFT算法是一种提取局部特征的算法,在尺度空间寻找极值点,提取位置,尺度,旋转不变量。 3 SIFT算法的主要特点: a) SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性。 b) 独特性(Distinctive
display-keypoints-in-SIFT
- 这是SIFT算法的一部分 作用是可以显示图像的极值点并用红色“x”标出,用到opencv gsl库 可以成功运行-SIFT algorithm is part of the role is to show the extreme point of the image and are marked with a red " x" can run successfully used opencv gsl library
Image
- 一个MFC程序 显示的是SIFT图像拼接效果图 以及极值点个数、RANSAC迭代次数等-An MFC program is displayed the SIFT image mosaic effect diagram, and the number of extreme points, RANSAC number of iterations, etc.
Optimization-Algorithm
- 摘 要 为了实现快速精确的图像配准, 提出了基于改进粒子群优化算法的互信息图像配准方法, 以互信息作为图像配准的相似性测度, 使用改进的 PSO 算法来求解配准所需的空间变换参数 改进的粒子群算法引入组织的概念把整个种群划分为多个子群体共同进化, 并引入变异运算减少算法陷入局部最优 把改进的粒子群优化算法应用到医学图像配准领域上来, 实验结果表明, 算法能够得到比较满意的配准结果-Abstract In order to realize the fast precise image regist
findextm
- 用于提取二维图形的局部极值点,为下面的二维EMD分解做基础,效果不错-Used to extract local extreme point of the two-dimensional graphics, and for the following two-dimensional EMD decomposition as a foundation, good results
SIFT
- 图像处理方面SIFT算法有关,SIFT算法是一种提取局部特征的算法,在尺度空间寻找极值点,提取位置,尺度,旋转不变量 SIFT特征是图像的局部特征-Image processing related to the SIFT algorithm SIFT algorithm is an algorithm to extract local features to find the extreme points in the scale space, extract the location, sca
zsy
- 中值滤波窗口大小影响滤波器性能,3×3滤波窗口可以很好地保持图像细节。提出一种新的自适应中值滤波方法。将3×3窗口中心的极值点作为候选噪声点,若候选噪声点仍然是7×7窗口的极值点,则该点即是噪声点。若以噪声点为中心的3×3滤波窗口的中值不是噪声,则噪声用中值替换。重复以上过程,直到没有噪声点被替换。-Median filter window size affect the filter performance, 33 filter window can be well preserving im
yantuo
- 图像延拓 求极大值极小值图像 并找到极值点所在的位置-Image continuation for maximum minimum image and find extreme value point s location
localMaximum
- matlab函数,将多维矩阵的极值找出并定位,图像处理经常用到,很简单很好用-matlab function, multi-dimensional matrix to identify and locate the extreme, often used in image processing, it is very simple to use
sobel
- Sobel算子对数字图像的每个像素,考察它的上下左右邻点的加权差,在边缘处达到极值这一现象检测边缘。-Sobel operator for each pixel in the digital image, visit the weighted difference between its vertical and horizontal neighboring points, reaching extreme edge of this phenomenon is detected at the e
