搜索资源列表
ComputeHurst
- 该代码为原创,用vc实现。代码实现的功能为计算网络流量的自相似指数hurst。里面包括了一个试验数据文件packetnumber1.dat,有需要的可以验证代码的正确性。-the original code using vc achieve. Code the function to calculate the flow of network self-similarity index hurst. Includes a pilot packetnumber1.dat data files, n
HBBG
- 用初等相似变换将一般实矩阵约化为赫申伯格矩阵-Using elementary similarity transformation will be about the general real matrix into a matrix of Joseph Berger Shanghai
Matrix
- 一些矩阵运算的函数,包括两个矩阵相加,两个矩阵相减,两个矩阵相乘,矩阵复制,矩阵求逆的全选主员高斯-约当法,矩阵的三角分解(LU分解),求Hessenberg矩阵全部特征根的QR法,约化一般实矩阵为Hessenberg矩阵的初等相似变换-A function of a number of matrix operations, including the sum of two matrices, subtract two matrices, the two matrices, matrix dup
K-mean
- K均值算法: 给定类的个数K,将N个对象分到K个类中去, 使得类内对象之间的相似性最大,而类之间的相似性最小-K-means algorithm: the number of a given type of K, will be assigned to N objects of category K go, making the object category similarity between the largest, while the category of the simi
kmean
- k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。-k-means algorithm process as follows: First of all, the object data from the n choose k
DL-Dist
- [Damerau–Levenshtein distance] vb.net程式碼,內含兩Function,一個計算距離,一個計算相似度。-[Damerau–Levenshtein distance] Code of vb.net, contains two Function, one for the distance, another for similarity.
3Dsimilaritytransform
- 3D投影轉換可以提共affine 轉換外另一種轉換方式 3D similarity transform-3D similarity transform
qrtrannnn
- 功能:对矩阵A的左上角的m阶对角块作QR变换:先用Givens变换作QR分解A=QR, 再作相似变换A:=Q AQ=RQ. 输入: n阶HessenbergA,其中A(m+1,m)=0,m>2. 输出: 变换后的Hessenberg形矩阵A. 2 用基本QR算法求实方阵的全部特征值.-Function: the upper left corner of the matrix A, diagonal blocks of order m to QR transfor
boxcount
- A set (e.g. an image) is called "fractal" if it displays self-similarity: it can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole. A possible characterisation of a fractal set is provided by the "box-
XGHS
- 计算地震数据多道数据相关系数,来判断多道间的相似度。-Multi-channel seismic data calculated the correlation coefficient to determine the similarity between multi-channel.
DTW-algorithm
- 利用C++实现的动态时间序列弯曲算法,计算时间序列距离,可用于相似匹配-DTW algorithm based on C++,which can be used for distance computing,and similarity match
czss
- 查找数字里的素数,是最快的代码如有雷同请删除-Find the number in the primes, is the fastest any similarity to delete code
Trans
- 坐标变换工具,求解平面相似变换参数示例数据文件,求解七参数示例数据文件内含vc VB示例-Coordinate transformation tools, solving the similarity transformation parameter plane sample data files, sample data files seven-parameter solution containing vc VB example
Sample-Entropy-VB
- 样本熵是一种有别于近似熵的不计数自身匹配的统计量,是对于近似熵算法的改进。样本熵与近似熵的物理意义一样,表示非线性动力学系统产生新模式概率的大小,主要用来定量刻画系统的规则度及复杂度。样本熵值越低,序列自我相似性越高,产生新模式的概率越低,时间序列越简单;反之,样本熵值越大,序列自我相似性越低,产生新模式的概率越高,时间序列越复杂。样本熵计算用程序VB6.0语言实现。-Sample entropy is different from the research and development o
Jacobi_Transformations_of_Symmetric
- The Jacobi method consists of a sequence of orthogonal similarity transformations of the form of equation. Each transformation (a Jacobi rotation) is just a plane rotation designed to annihilate one of the off-diagonal matrix elements.
hbqr
- Hessenberg变换QR法先用初等相似变换将一般实矩阵约化为Hessenberg矩阵,即赫申伯格(Hessenberg)矩阵。再用用带原点位移的QR算法计算赫申伯格矩阵的全部特征值与相应的特征向量。-Hessenberg transform QR method with elementary first similarity transformation matrix will generally about into Hessenberg matrix
HausdorffDist
- Calculate the Hauss droff distance between two images to check the similarity
IsothermalGravityCurrentSolver
- 线性化方法应用于非线性的DI的延髓方程粘性重力流等温派生NITE DI erence数值方法。数值方法可以采用相似的解决方案进行验证。-The linearisation method is applied to the nonlinear diusion equation governing the isothermal of viscous gravity currents to derive a nite dierence numerical scheme. The numerica
271015c6102c
- 一种高效的聚类算法给定要聚类的N的对象以及N*N的距离矩阵(或者是相似性矩阵), 层次式聚类方法的基本步骤(参看S.C. Johnson in 1967)-An efficient clustering algorithm given the object of the clustering N and N* N matrix of distances (or similarity matrix), the basic steps of the hierarchical clustering m
Attachments_2012_12_11
- Distinguish the similarity between dynamic programming and divide and conquer design techniques.
