资源列表
matlab车牌识别完整程序
- 对图像中的车牌进行车牌区域提取、字符分割、自动识别(The area extraction, character segmentation and automatic recognition of the license plate in the image)
matlab中文字符的识别代码
- 提供一种中文字符识别的代码 文件中提供执行代码和执行结果(Provides code and execution results in a code file that provides a Chinese character recognition)
手势识别
- 通过雷达采集手势数据,产生手势图像,再用SVM识别(Gesture data is acquired by radar, and gesture and image are generated, and then recognized by SVM.)
基于PCA的人脸识别
- 基于PCA的人脸识别,包括图片的预处理,特诊提取,人脸识别,是一份不错的学习资料(Face recognition based on PCA, including image preprocessing, special diagnosis and face recognition, is a good learning material.)
faces94
- 最新设计的人脸库,包含不同的光照表情,一共152个分类,每个分类20个样本(The newly designed face library contains different illumination expressions. There are 152 classifications, 20 samples for each category.)
chi_sim.traineddata
- tesseract是一款免费的ocr识别开源软件,最早在Linux上i,现在已经有Windows4.0版本了。chi_sim.traineddata是中文字库,解压缩后放在tessdata目录下,可以通过PowerShell使用。(Tesseract is a free OCR recognition open source software. The earliest is I on Linux, and now there is Windows4.0 version. Chi_sim.tra
基于MATLAB的文字识别
- 基于matlab的手写字体识别程序,并对结果进行保存(Matlab based handwritten font recognition program, and save the results.)
Image-Cap
- 通过机器式学习算法完成对图像的识别,并生成相应的文字序列(Through the machine learning algorithm, the image recognition is completed and the corresponding text sequence is generated.)
facedetection0
- 基于颜色的人脸识别,将rgb转换到YCrCb空间,检测出人脸后,用方框标出。(Color-based face recognition)
手写数字识别
- 通过训练图片中数字0~9,跟着通过手写输入识别出所写数字的类别。(By training the number of 0~9 in the picture, we can identify the category of the written number followed by handwritten input.)
Lenet5
- 利用lenet5,进行数字和字母的识别,网络已训练好可直接使用。 附带中文字符样本(Using lenet5 to recognize numbers and letters, the network has been trained and can be used directly. Incidental Chinese character sample)
UCI的光学字符识别数据集
- 其目标是将大量黑白矩形像素显示器中的每一个识别为英文字母中的26个大写字母之一。字符图像基于20种不同的字体,并且这20种字体中的每个字母随机失真以产生20,000个独特刺激的文件。每个刺激被转换成16个基本的数字属性(统计矩和边缘计数),然后将其缩放以适合从0到15的整数值范围。我们通常在前16000个项目上进行训练,然后使用结果模型预测剩余的4000个字母类别。请参阅上面引用的文章以获取更多详细信息。(The objective is to identify each of a large
