资源列表
LaplacianPyramid
- 拉普拉斯金字塔图像融合,使用opencv编写,可运行,效果很好,可供参考学习-Laplacian pyramid image fusion, using opencv prepared to run, with good results, for reference learning
yinying
- 较好地实现了阴影检测和去除的功能,采用的是OpenCV和C++来进行编程,对去除阴影有比较好的效果。-Well, we can realize the function of the shadow detection and removal, USES is OpenCV and c++ programming, have a good effect to remove the shadow
3
- 基于粒子群优化算法的otsu阈值分割,采用双阈值分割图像-otsu based on pso
LBP
- 用opencv实现LBP算法。通过一个3*3的模板在图像矩阵上滑动,用模板四周的八领域像素和中间的像素值比较,大于的为1,小于的为0,从左上角顺时针排列,然后转化为十进制放在模板中间的对应位置。-LBP algorithm with opencv. Through a 3* 3 matrix template image slide, with the template field of eight around the center pixel and the pixel value comp
OpencvSegmentation-20130822
- 以Opencv为基础,用多边形对图像进行切割。包含的一般技术有:Opencv的图像基本操作;鼠标绘制多边形,调整多边形的顶点;将图像位于多边形内的部分切割下来,保存到目标位置。-The function of image segmentation by using polygong ROI is developed. OpenCV 2.4.5 is used.
Target-trace
- 利用Opencv对运动目标(包括汽车,行人)的AVI视频进行检测并跟踪。效果十分显著。 - detect and tracking the moving targets (including cars, pedestrians) AVI video detection and tracking. Effect is very significant.
keyframe
- 视频关键帧提取。全阈值算法找到每个镜头的关键帧并保存-Video key frame extraction.Using threshold algorithm to find key frames in every scene and save them.
crackDection
- 裂缝检测,各种二值化方法用于图像分割的对比-Crack detection, a variety of binarization methods for image segmentation comparison
车牌识别
- 基于opencv,矩形区域搜索有问题, 具有好的和谐结构,是一个很好的基础
opencv
- 主要用于图像中的森林防火检测,比较实用。-Mainly used for forest fire detection in the image, more practical.
FeatureTracker
- 基于光流法的人脸追踪 先通过opencv的类haar特征检测人脸 然后用光流法筛选特征点并追踪-Optical flow method based face tracking to pass the class haar feature detection opencv face then light flow filter and track feature points
Scratch
- 基于opencv的mfc多文档程序,用来检测钢板划痕,统计其位置和条数-Based on opencv mfc multiple document procedures used to detect steel scratches, its location and the number of statistics
