资源列表
DarkChannelPiror
- 基于暗原色先验去雾处理程序,在visualstudio2010环境下配置好OpenCV2.4.4版本,效果较好-Prior to fog handler in visualstudio2010 environment configuration based on dark colors good OpenCV2.4.4 version better
EXCEL-files-into-KML-files--tool
- 软件可实现将EXCEL中的地理信息转化为kml文件,使之可以在Google Earth中编辑和使用-Software enables the EXCEL geographic information into a kml file, so that it can be edited and used in Google Earth
number
- 用于车牌识别的0-9数字字符模板图像文件及其读取模板图像文件后以.mat格式保存-For license plate recognition of 0-9 digital character template image file and read the template image file to.Mat format
character
- 用于车牌识别的英文字符模板图像文件及其读取所有英文字符模板图像文件后以.mat格式保存-For English character template image file and read all the license plate recognition English character template image files in the.Mat format
retinex_frankle_mccann
- retinex_frankle_mccann方法-retinex frankle mccann
retinex
- Retinex是一种常用的建立在科学实验和科学分析基础上的图像增强方法-Retinex Function
Untitled
- 同态滤波法对图像进行去雾处理,效果明显,只需将读入的图片改为你需要处理的图片即可,已在MATLAB上测试-Homomorphic filtering method for image processing to the fog, the effect is obvious, just read image to the image you want to deal with, has been tested on MATLAB
MSR
- Retinex理论始于Land和McCann于20世纪60年代作出的一系列贡献,其基本思想是人感知到某点的颜色和亮度并不仅仅取决于该点进入人眼的绝对光线,还和其周围的颜色和亮度有关。Retinex这个词是由视网膜(Retina)和大脑皮层(Cortex)两个词组合构成的.Land之所以设计这个词,是为了表明他不清楚视觉系统的特性究竟取决于此两个生理结构中的哪一个,抑或是与两者都有关系-MSR Retinex Function
SSR
- Retinex理论始于Land和McCann于20世纪60年代作出的一系列贡献,其基本思想是人感知到某点的颜色和亮度并不仅仅取决于该点进入人眼的绝对光线,还和其周围的颜色和亮度有关。Retinex这个词是由视网膜(Retina)和大脑皮层(Cortex)两个词组合构成的.Land之所以设计这个词,是为了表明他不清楚视觉系统的特性究竟取决于此两个生理结构中的哪一个,抑或是与两者都有关系-A Retinex Function
xiaobofenjieyuchonggou
- 对于小波进行分析,通过对小波分解与重构,对噪声进行降噪-Wavelet analysis, through the wavelet decomposition and reconstruction, noise reduction
meanshift
- meanshift均值平移跟踪算法中核函数窗宽的自动选取代码,根据目标大小变化核窗宽,使得当目标出现大小变化时准确跟踪到目标中心-Meanshift mean shift tracking algorithm kernel bandwidth automatic code is selected, according to the objective changes in the size of the kernel bandwidth, making when target size chan
super-resolutioncode
- 该代码是基于学习的超分辨率重建,此算法是在线字典学习,字典的训练与稀疏表示与重建同时进行。-This code is based on the study of super-resolution reconstruction, this algorithm is learning online dictionaries, dictionaries of training and sparse representation and reconstruction simultaneously.
