资源列表
groundtruth
- 高光谱源数据,用于高光谱实验。高光谱源数据,用于高光谱实验-Hyperspectral data source for hyperspectral experiment.Hyperspectral data source for hyperspectral experiment
filter
- matlab对图像随机添加四种噪声,然后分别通过自编中值滤波,均值滤波,高斯滤波,和维纳滤波进行滤波-matlab add four random noise to the image, and then were filtered by self median filtering, mean filtering, Gaussian filtering, and Wiener filtering
Gaussian
- 高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。-Gaussian smoothing filter is a linear filter for the elimination of Gaussian nois
sift-alghrithms
- SIFT算法大致有四个步骤: 1,尺度空间极值检测。在尺度空间通过高斯微分函数来检测潜在的对于尺度和旋转不变的兴趣点。 2,关键点定位。在兴趣点位置上,确定关键点的位置和尺度。3,方向确定。基于图像局部的梯度方向,给每个关键点分配方向。4,关键点描述。在每个关键点的领域内测量图像局部的梯度。最终用一个特征向量来表达。-SIFT algorithm roughly four steps: 1, the scale space extremum detection. In the sc
kalman-alghrioms-matlab
- 则卡尔曼滤波的算法流程为: 1.计算预估计协方差矩阵2.计算卡尔曼增益矩阵3.更新估计4.计算更新后估计协防差矩阵-The Kalman filter algorithm processes as follows: 1. Calculate pre-estimate covariance matrix 2 calculate the Kalman gain matrix 3 updated estimate calculated after 4 update estimated defend d
LPRDemo
- 车牌识别有什么不懂的就分析一下,好的软件,自己看-good chepai
iserial1
- this the library Orcad -this is the library Orcad
MyCollision1
- OpenGL编程实现多个彩色小球在密闭空间掉落碰撞的三维场景,并且具有反复弹起掉落过程-OpenGL programming implement multiple color balls in confined Spaces drop impact of 3 d scene, and has repeatedly bounce drop process
QUTS
- 最大类间法进行图像的前景和背景的分割,并进行二值化处理-Most kinds of method between the foreground and background of the image segmentation, and binarization processing
Opencv-check-degree-test
- vc6.0 opencv1.0 电子元件角度识别 初学者必看-vc6.0 opencv1.0 electronic components beginners Watchable angle recognition
AntColony
- 图像配准技术中用蚁群算法来检测函数的最大值-Image registration technique using ant colony algorithm to detect the function of the maximum value
Hungarian-algorithm
- 这是一个可行的匈牙利算法,是一个基本程序,也可以嵌入到大程序中,对初学者和使用者都是不错的参考。-This is a executable Hungarian algorithm .You can embed it in your program and you can learn it clearly.
