资源列表
PSO
- 粒子群算法是一种优化算法,主要解决特定环境下的最值问题-PSO is an optimization algorithm, mainly to solve specific environmental problems under the most value
nmf(train)
- 用于入侵检测系统开发的非负矩阵分解算法,用于对KDD99数据进行样本训练。-Intrusion detection system for the development of non-negative matrix factorization algorithm, the data sample used for KDD99 training.
nmf(test)
- 用于入侵检测的系统的NMF算法,此部分为用于KDD99数据的测试部分的代码。-Intrusion detection system for NMF algorithm, this part of the test data for KDD99 part of the code.
moead
- 包括近年来Q.F.ZHANG 关于基于分解的多目标优化算法的一系列的文章资料。-Including the recent QFZHANG decomposition based on multi-objective optimization of a series of articles data.
GALQR
- 遗传算法优化基于LQR的一级倒立摆稳摆控制-LQR-based genetic algorithm optimization of a steady pendulum inverted pendulum control
FLch7NNeg1
- 第七章的用改进的神经网络MBP算法辨识 例7.1 对具有随机噪声的二阶系统的模型辨识,是侯媛彬和汪梅的系统辨识课本上第七章的的实验。 -Chapter VII of the MBP with an improved algorithm for neural network identification Example 7.1 that have random noise second-order system model identification is Houyuan Bin an
FLch7FNNeg3
- 第七章的模糊神经网络解耦MATLAB程序 例7.3 用隶属函数型神经网与模糊控制融合的解耦程序(FLch7FNNeg3.m) 是侯媛彬和汪梅的系统辨识课本上第七章的的实验。 -Chapter VII of the fuzzy neural network decoupling Example 7.3 with the MATLAB program membership function neural network and fuzzy control integration of t
manual
- 文章详细的介绍了matlab遗传算法工具箱及其使用-Article a detailed descr iption of matlab genetic algorithm toolbox and its use
BP
- 建立BP神经网络负荷预测模型,并对BP神经网络的节点(输入层、中间层、输出层)进行选择,并选用合适的小波神经网络的训练函数,提高收敛速度和负荷预测精度。-The establishment of BP neural network load forecasting model, and the BP neural network nodes (input layer, middle layer, output layer) to select and choose the appropriate
AG_Fortran_rar
- Genetic Algorithm in Fortran code
BP-neural-network
- BP神经网络 乳腺癌诊断 自动选择最佳神经元个数-BP neural network automatically select the best breast cancer diagnosis the number of neurons
Pioneer3_mannel
- Pioneer3机器人资料 包括机器人的组成,机器人的操纵方式,系统结构,工作模式,软件系统,和一些简单例程-Pioneer3 robot composed of information, including robots, robot control, system architecture, operating mode, the software system, and some simple routines
