文件名称:kernels
-
所属分类:
- 标签属性:
- 上传时间:2013-07-16
-
文件大小:88.09kb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
根据模式识别理论,低维空间线性不可分的模式通过非线性映射到高维特征空间则可能实现线性可分,但是如果直接采用这种技术在高维空间进行分类或回归,则存在确定非线性映射函数的形式和参数、特征空间维数等问题,而最大的障碍则是在高维特征空间运算时存在的“维数灾难”。采用核函数技术可以有效地解决这样问题。
-According to the pattern recognition theory, a low dimensional space linearly inseparable pattern through nonlinear mapping into a high-dimensional feature space may realize linearly separable, but if directly using this technique for classification or regression in high dimensional space, then there exists nonlinear mapping function form and parameters, the dimension of the feature space and other issues, and the biggest obstacle is the curse of dimensionality in high dimensional feature space. "". The kernel technology can effectively solve this problem.
-According to the pattern recognition theory, a low dimensional space linearly inseparable pattern through nonlinear mapping into a high-dimensional feature space may realize linearly separable, but if directly using this technique for classification or regression in high dimensional space, then there exists nonlinear mapping function form and parameters, the dimension of the feature space and other issues, and the biggest obstacle is the curse of dimensionality in high dimensional feature space. "". The kernel technology can effectively solve this problem.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
kernels/
kernels/Contents.m
kernels/Contents.m~
kernels/diagker.c
kernels/diagker.dll
kernels/diagker.m
kernels/diagker.mexa64
kernels/diagker.mexglx
kernels/dualcov.m
kernels/dualmean.m
kernels/extraction/
kernels/extraction/Contents.m
kernels/extraction/gda.m
kernels/extraction/greedyappx.m
kernels/extraction/greedyappx.m~
kernels/extraction/greedykpca.m
kernels/extraction/greedykpca.m~
kernels/extraction/kpca.m
kernels/extraction/kpca.m~
kernels/extraction/kpcarec.m
kernels/extraction/kpcarec.m~
kernels/greedykls.m
kernels/kdist.m
kernels/kernel.c
kernels/kernel.dll
kernels/kernel.m
kernels/kernel.mexa64
kernels/kernel.mexglx
kernels/kernel_fun.c
kernels/kernel_fun.c~
kernels/kernel_fun.h
kernels/kernelproj.m
kernels/kernelproj_mex.c
kernels/kernelproj_mex.c~
kernels/kernelproj_mex.dll
kernels/kernelproj_mex.mexa64
kernels/kernelproj_mex.mexglx
kernels/kfd.m
kernels/knorm.m
kernels/knorm.m~
kernels/kperceptr.m
kernels/lin2svm.m
kernels/minball.m
kernels/minball.m~
kernels/preimage/
kernels/preimage/Contents.m
kernels/preimage/rbfpreimg.m
kernels/preimage/rbfpreimg.m~
kernels/preimage/rbfpreimg2.m
kernels/preimage/rbfpreimg3.m
kernels/redquadh.m
kernels/rspoly2.m
kernels/rspoly2.m~
kernels/rsrbf.m
kernels/rsrbf.m~
kernels/Contents.m
kernels/Contents.m~
kernels/diagker.c
kernels/diagker.dll
kernels/diagker.m
kernels/diagker.mexa64
kernels/diagker.mexglx
kernels/dualcov.m
kernels/dualmean.m
kernels/extraction/
kernels/extraction/Contents.m
kernels/extraction/gda.m
kernels/extraction/greedyappx.m
kernels/extraction/greedyappx.m~
kernels/extraction/greedykpca.m
kernels/extraction/greedykpca.m~
kernels/extraction/kpca.m
kernels/extraction/kpca.m~
kernels/extraction/kpcarec.m
kernels/extraction/kpcarec.m~
kernels/greedykls.m
kernels/kdist.m
kernels/kernel.c
kernels/kernel.dll
kernels/kernel.m
kernels/kernel.mexa64
kernels/kernel.mexglx
kernels/kernel_fun.c
kernels/kernel_fun.c~
kernels/kernel_fun.h
kernels/kernelproj.m
kernels/kernelproj_mex.c
kernels/kernelproj_mex.c~
kernels/kernelproj_mex.dll
kernels/kernelproj_mex.mexa64
kernels/kernelproj_mex.mexglx
kernels/kfd.m
kernels/knorm.m
kernels/knorm.m~
kernels/kperceptr.m
kernels/lin2svm.m
kernels/minball.m
kernels/minball.m~
kernels/preimage/
kernels/preimage/Contents.m
kernels/preimage/rbfpreimg.m
kernels/preimage/rbfpreimg.m~
kernels/preimage/rbfpreimg2.m
kernels/preimage/rbfpreimg3.m
kernels/redquadh.m
kernels/rspoly2.m
kernels/rspoly2.m~
kernels/rsrbf.m
kernels/rsrbf.m~
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
