文件名称:CNN-pooling-strategy
-
所属分类:
- 标签属性:
- 上传时间:2017-03-01
-
文件大小:28.17mb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
基于卷积层和池化层的卷积深度网络被执行,该框架可以有效地识别灰度图像,彩色图像和高光谱图像。- Convolution deep network based on convolution layer and pooling layer is performed, the framework can effectively identify grayscale images, color images and hyperspectral images.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
CNN/cnnapplygrads.asv
CNN/cnnapplygrads.m
CNN/cnnbp - 副本.m
CNN/cnnbp.asv
CNN/cnnbp.m
CNN/cnnff.asv
CNN/cnnff.m
CNN/cnnnumgradcheck.m
CNN/cnnsetup.m
CNN/cnntest.m
CNN/cnntrain.m
CNN/MaxPooling.cpp
CNN/MaxPooling.cpp.bak
CNN/MaxPooling.m
CNN/MaxPooling.mexw32
CNN/MaxPooling.mexw64
CNN/MaxPoolingGPU.cpp
CNN/MaxPoolingGPU.cpp.bak
CNN/StochasticPooling.cpp
CNN/StochasticPooling.mexw64
CNN/StochaticTest.m
CNN/test_example_CNN.asv
CNN/test_example_CNN.m
data/mnist_uint8.mat
util/allcomb.m
util/expand.m
util/flicker.m
util/flipall.m
util/fliplrf.m
util/flipudf.m
util/im2patches.m
util/isOctave.m
util/makeLMfilters.m
util/myOctaveVersion.m
util/normalize.m
util/patches2im.m
util/randcorr.m
util/randp.m
util/rnd.m
util/sigm.m
util/sigmrnd.m
util/softmax.m
util/tanh_opt.m
util/visualize.m
util/whiten.m
util/zscore.m
CNN
data
util
67506287CNN-with-three-pooling-strategy/CNN/cnnapplygrads.asv
67506287CNN-with-three-pooling-strategy/CNN/cnnapplygrads.m
67506287CNN-with-three-pooling-strategy/CNN/cnnbp - 副本.m
67506287CNN-with-three-pooling-strategy/CNN/cnnbp.asv
67506287CNN-with-three-pooling-strategy/CNN/cnnbp.m
67506287CNN-with-three-pooling-strategy/CNN/cnnff.asv
67506287CNN-with-three-pooling-strategy/CNN/cnnff.m
67506287CNN-with-three-pooling-strategy/CNN/cnnnumgradcheck.m
67506287CNN-with-three-pooling-strategy/CNN/cnnsetup.m
67506287CNN-with-three-pooling-strategy/CNN/cnntest.m
67506287CNN-with-three-pooling-strategy/CNN/cnntrain.m
67506287CNN-with-three-pooling-strategy/CNN/MaxPooling.cpp
67506287CNN-with-three-pooling-strategy/CNN/MaxPooling.cpp.bak
67506287CNN-with-three-pooling-strategy/CNN/MaxPooling.m
67506287CNN-with-three-pooling-strategy/CNN/MaxPooling.mexw32
67506287CNN-with-three-pooling-strategy/CNN/MaxPooling.mexw64
67506287CNN-with-three-pooling-strategy/CNN/MaxPoolingGPU.cpp
67506287CNN-with-three-pooling-strategy/CNN/MaxPoolingGPU.cpp.bak
67506287CNN-with-three-pooling-strategy/CNN/StochasticPooling.cpp
67506287CNN-with-three-pooling-strategy/CNN/StochasticPooling.mexw64
67506287CNN-with-three-pooling-strategy/CNN/StochaticTest.m
67506287CNN-with-three-pooling-strategy/CNN/test_example_CNN.asv
67506287CNN-with-three-pooling-strategy/CNN/test_example_CNN.m
67506287CNN-with-three-pooling-strategy/data/mnist_uint8.mat
67506287CNN-with-three-pooling-strategy/util/allcomb.m
67506287CNN-with-three-pooling-strategy/util/expand.m
67506287CNN-with-three-pooling-strategy/util/flicker.m
67506287CNN-with-three-pooling-strategy/util/flipall.m
67506287CNN-with-three-pooling-strategy/util/fliplrf.m
67506287CNN-with-three-pooling-strategy/util/flipudf.m
67506287CNN-with-three-pooling-strategy/util/im2patches.m
67506287CNN-with-three-pooling-strategy/util/isOctave.m
67506287CNN-with-three-pooling-strategy/util/makeLMfilters.m
67506287CNN-with-three-pooling-strategy/util/myOctaveVersion.m
67506287CNN-with-three-pooling-strategy/util/normalize.m
67506287CNN-with-three-pooling-strategy/util/patches2im.m
67506287CNN-with-three-pooling-strategy/util/randcorr.m
67506287CNN-with-three-pooling-strategy/util/randp.m
67506287CNN-with-three-pooling-strategy/util/rnd.m
67506287CNN-with-three-pooling-strategy/util/sigm.m
67506287CNN-with-three-pooling-strategy/util/sigmrnd.m
67506287CNN-with-three-pooling-strategy/util/softmax.m
67506287CNN-with-three-pooling-strategy/util/tanh_opt.m
67506287CNN-with-three-pooling-strategy/util/visualize.m
67506287CNN-with-three-pooling-strategy/util/whiten.m
67506287CNN-with-three-pooling-strategy/util/zscore.m
67506287CNN-with-three-pooling-strategy/CNN
67506287CNN-with-three-pooling-strategy/data
67506287CNN-with-three-pooling-strategy/util
67506287CNN-with-three-pooling-strategy
CNN/cnnapplygrads.m
CNN/cnnbp - 副本.m
CNN/cnnbp.asv
CNN/cnnbp.m
CNN/cnnff.asv
CNN/cnnff.m
CNN/cnnnumgradcheck.m
CNN/cnnsetup.m
CNN/cnntest.m
CNN/cnntrain.m
CNN/MaxPooling.cpp
CNN/MaxPooling.cpp.bak
CNN/MaxPooling.m
CNN/MaxPooling.mexw32
CNN/MaxPooling.mexw64
CNN/MaxPoolingGPU.cpp
CNN/MaxPoolingGPU.cpp.bak
CNN/StochasticPooling.cpp
CNN/StochasticPooling.mexw64
CNN/StochaticTest.m
CNN/test_example_CNN.asv
CNN/test_example_CNN.m
data/mnist_uint8.mat
util/allcomb.m
util/expand.m
util/flicker.m
util/flipall.m
util/fliplrf.m
util/flipudf.m
util/im2patches.m
util/isOctave.m
util/makeLMfilters.m
util/myOctaveVersion.m
util/normalize.m
util/patches2im.m
util/randcorr.m
util/randp.m
util/rnd.m
util/sigm.m
util/sigmrnd.m
util/softmax.m
util/tanh_opt.m
util/visualize.m
util/whiten.m
util/zscore.m
CNN
data
util
67506287CNN-with-three-pooling-strategy/CNN/cnnapplygrads.asv
67506287CNN-with-three-pooling-strategy/CNN/cnnapplygrads.m
67506287CNN-with-three-pooling-strategy/CNN/cnnbp - 副本.m
67506287CNN-with-three-pooling-strategy/CNN/cnnbp.asv
67506287CNN-with-three-pooling-strategy/CNN/cnnbp.m
67506287CNN-with-three-pooling-strategy/CNN/cnnff.asv
67506287CNN-with-three-pooling-strategy/CNN/cnnff.m
67506287CNN-with-three-pooling-strategy/CNN/cnnnumgradcheck.m
67506287CNN-with-three-pooling-strategy/CNN/cnnsetup.m
67506287CNN-with-three-pooling-strategy/CNN/cnntest.m
67506287CNN-with-three-pooling-strategy/CNN/cnntrain.m
67506287CNN-with-three-pooling-strategy/CNN/MaxPooling.cpp
67506287CNN-with-three-pooling-strategy/CNN/MaxPooling.cpp.bak
67506287CNN-with-three-pooling-strategy/CNN/MaxPooling.m
67506287CNN-with-three-pooling-strategy/CNN/MaxPooling.mexw32
67506287CNN-with-three-pooling-strategy/CNN/MaxPooling.mexw64
67506287CNN-with-three-pooling-strategy/CNN/MaxPoolingGPU.cpp
67506287CNN-with-three-pooling-strategy/CNN/MaxPoolingGPU.cpp.bak
67506287CNN-with-three-pooling-strategy/CNN/StochasticPooling.cpp
67506287CNN-with-three-pooling-strategy/CNN/StochasticPooling.mexw64
67506287CNN-with-three-pooling-strategy/CNN/StochaticTest.m
67506287CNN-with-three-pooling-strategy/CNN/test_example_CNN.asv
67506287CNN-with-three-pooling-strategy/CNN/test_example_CNN.m
67506287CNN-with-three-pooling-strategy/data/mnist_uint8.mat
67506287CNN-with-three-pooling-strategy/util/allcomb.m
67506287CNN-with-three-pooling-strategy/util/expand.m
67506287CNN-with-three-pooling-strategy/util/flicker.m
67506287CNN-with-three-pooling-strategy/util/flipall.m
67506287CNN-with-three-pooling-strategy/util/fliplrf.m
67506287CNN-with-three-pooling-strategy/util/flipudf.m
67506287CNN-with-three-pooling-strategy/util/im2patches.m
67506287CNN-with-three-pooling-strategy/util/isOctave.m
67506287CNN-with-three-pooling-strategy/util/makeLMfilters.m
67506287CNN-with-three-pooling-strategy/util/myOctaveVersion.m
67506287CNN-with-three-pooling-strategy/util/normalize.m
67506287CNN-with-three-pooling-strategy/util/patches2im.m
67506287CNN-with-three-pooling-strategy/util/randcorr.m
67506287CNN-with-three-pooling-strategy/util/randp.m
67506287CNN-with-three-pooling-strategy/util/rnd.m
67506287CNN-with-three-pooling-strategy/util/sigm.m
67506287CNN-with-three-pooling-strategy/util/sigmrnd.m
67506287CNN-with-three-pooling-strategy/util/softmax.m
67506287CNN-with-three-pooling-strategy/util/tanh_opt.m
67506287CNN-with-three-pooling-strategy/util/visualize.m
67506287CNN-with-three-pooling-strategy/util/whiten.m
67506287CNN-with-three-pooling-strategy/util/zscore.m
67506287CNN-with-three-pooling-strategy/CNN
67506287CNN-with-three-pooling-strategy/data
67506287CNN-with-three-pooling-strategy/util
67506287CNN-with-three-pooling-strategy
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。