资源列表
zifushibie
- 采用神经网络的方法对字符进行训练和识别。识别的效果较好,方法速度较快,比较简单-The neural network approach to character training and recognition. Identification of better, faster method is relatively simple
aca-color
- 采用蚁群算法分割图像,非本人原创,大家共同学习-Ant colony algorithm using image segmentation, non-my original, learn together
ACA_FCM
- 蚁群算法优化模糊c均值聚类,非本人原创,大家共同学习-Ant colony algorithm to optimize fuzzy c-means clustering, non-my original, we learn together
OpenCV.2.Computer.Vision
- opencv2.0版本的函数编程手册,用于图像处理和机器视觉方面很好的参考书籍。-opencv2.0 version of the function programming manual for image processing and machine vision good reference books.
FAST
- 对图像进行FAST特征点提取,对提取出的特征点计算互信息,以互信息为相似性度量进行图像配准-FAST the image feature point extraction, the extracted feature point mutual information to mutual information image registration as a similarity measure
Lab_quyuzengzhang
- 基于LAB颜色空间的区域生长分割方法,大家共同学习-LAB color space region segmentation method based growth, learn together
block
- 对图像分块程序 ,有示例, 大家共同学习-The image block program, a sample, learn together
BOW-MATLAB
- BOW主要是对图像的金字塔进行分块描述,进一步生成模型或者判别模型完成图像分类。在图像搜索和筛选中发挥着重要作用-BOW mainly on image pyramids block descr iption, further models or discriminant model generates complete image classification. It plays an important role in image search and screening
The-study-of-the-fractal-encoding
- 基于MATLAB的分形图像编码在图像处理中的应用,还详细的介绍了分形图像编码的发展及未来的发展方向。-Fractal image coding based on MATLAB application in image processing, also the development of fractal image coding are introduced in detail, and the development direction of the future.
ORB-Opencv
- 首先使用FAST对图像进行特征点提取,之后生成ORB描述符,进行点特征匹配,可以达到快速精确配准-The first to use the image FAST feature point extraction, after generating ORB descr iptors were point feature matching, can achieve fast and accurate registration
手眼融合
- 通过使用MATLAB进行手眼融合的实验,是图像融合中的一部分
gabor
- 二维Gabor小波变换是在时频域进行信号分析处理的重要工具,其变换系数有着良好的视觉特性和生物学背景,因此被广泛应用于图像处理、模式识别等领域-An important tool for two-dimensional Gabor wavelet transform is a time-frequency domain signal analysis and processing, the conversion coefficient has a good visual properties a
